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Thermodynamics of electrolytes on anisotropic lattices
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The phase behavior of ionic fluids on simple cubic and tetrag@masotropig lattices has been studied by
grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and
continuous-space rLelectrostatic interactions have been investigated. At all degrees of anisotropy, only coex-
istence between a disordered low-density phase and an ordered high-density phase with the structure similar to
ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to
be increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the
Debye-Hickel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we
estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electro-
lyte to beT}; =0.14 andpy;; =0.70.
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[. INTRODUCTION putational advantages over continuous space simulations,
while producing almost identical critical parameters and

After controversial experimental results on the nature ofphase diagramsl0]. By contrast, when the ionic diameter is
ionic criticality [1-3] the studies of critical phenomena in equal to the spacing of the underlying lattice, the phase dia-
ionic fluids received a fresh impetus, and over the past degram is drastically different. The symmetry of simple cubic
cade substantial progress has been ni&j4. However, a or body-centered cubic lattices allows for unequal charge
complete thermodynamic description of electrolyte systemslistribution between two identical sublattices, yielding an or-
is still unavailable. dered structure similar to an ionic crystal. The competition

The simplest and most frequently employed model systenbetween electrostatic interactions of the two charged sublat-
for both theoretical and Monte Carlo investigations of Cou-tices and the entropy of charge separation leads then to
lombic systems is the restricted primitive mod@&PM), order-disorder phase transitions and a tricritical point
which is a gas of equisized hard-sphere ions carrying posi10,22—24.
tive and negative charges of equal magnitude. From the the- A systematic study of the lattice restricted primitive
oretical point of view, a reasonable description of the RPMmodel (LRPM) based on the Debye-ldkel approach has
in the critical region has been obtained at a mean-field leveshown that, in accordance with Monte Carlo simulations, a
using integral equations approaf@+8] and Debye-Hokel  Coulombic-governed gas-liquid phase transitions seen in
theory[4,5]. While theoretical predictions of the critical pa- continuum electrolytes is totally suppressed on simple cubic
rameterd5,8,9 agree reasonably well with those obtained inand body-centered cubic lattices due to the formation of the
computer simulationf10,11], recent Monte Carlo investiga- thermodynamically more stable charge-ordered phasé
tions of ionic systems indicate a nonclassical Ising-likeCiach and Stel[25] argued that, unlike nonionic fluids, in
asymptotic critical behaviof12]. Moreover, predictions of charged systems the most important are short-range fluctua-
different mean-field theories for charge- and size-asymmetritions. Consequently, they studied a LRPM supplemented
primitive systems differ significantly from each othgl3—  with additional short-range interactions between ions and
17]. In the absence of real experimental data, numericatoncluded that at some strength of the short-range attraction
simulations provide an important criterion for testing differ- both the normal critical and tricritical point can become ther-
ent theoretical method48-21. modynamically stablg25]. This leads to complex phase dia-

In recent years, a new theoretical approach to study thgrams with two distinct phase transitions, one between gas
thermodynamics and criticality of Coulomb systems basedind disordered liquid phase, and another one between disor-
on the investigation of corresponding lattice models, haglered liquid and a charge ordered phase. Recent Monte Carlo
been introduced15,22—26. Being obviously less realistic studies have confirmed qualitatively most of these theoretical
than their continuous-space counterparts, lattice models aggedictions but further investigations are requifed].
much easier to handle analytically, and the information they At low dimensions Coulombic interactions are stronger
provide is crucial for understanding the physics of criticality. than in three-dimensional systems, and the possibility for
Moreover, finely discretized lattices with lattice spacing sev-gas-liquid phase transitions increases. This idea has been
eral times smaller than the ion size present substantial conused recently in the investigation of anisotropic lattice mod-

els of electrolytes using Debye-kkel method 26]. In this
study the anisotropy mimicked the lowering of the spatial
*Current address: Dept. of Materials Science and Engineeringlimensionality. It has been found that for strongly aniso-
University of lllinois, Urbana, IL 61801, USA. tropic lattices gas-liquid phase coexistence is restored. How-
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ever, this theory neglects an ion clustering phenomend28,29). However, no similar method is available for the
which are important in charged particles systdwh$§]. Thus lattice Coulomb potential. Therefore, we propose the follow-
these theoretical predictions should be tested by computéng approximate scheme, which is based on the asymptotic
simulations. properties of the anisotropic lattice potentia).

Current Monte Carlo studies of lattice RPM @+ 3 di- It can be shown that the potentidl) for finite « at large
mensions employ the continuous spacer Igotential distances behaves as
[10,22,27. However, because of the discrete lattice symme-
try, the correct lattice Coulomb potential differs fronr Ht a
short distances and approaches it asymptotically at large dis- Uij(r=(xy,2))~ \/;2+_y2+—az§' 3
tances. This raises the question of how using the correct
electrostatic interactions will affect the thermodynamics and=or this potential, an Ewald-like sum can be constructed
critical behavior of ionic systems. Indeed, the lattice correc-along the lines of the derivation in R€R29], which yields
tion to 1f potential decays rapidly with distance and thus itthe “continuum” part of the energy of interactions of peri-
can be viewed in a sense as an additional short-range intesdic system of &l particles
action. In order to understand correctly the underlying
mechanisms of phase transitions in Coulombic systems, lat- 1
tice models should be investigated with the corresponding = T
lattice potentials.

In this paper we study the RPM on tetragonal lattices
using grand canonical Monte Carlo simulations and histo- => qiqj(z

i,j= n’

allspace |ri,j|

a’exp( — m?|n' |2/ p?+ 2min'r ;)

gram reweighting techniqug32]. The correct lattice Cou- 27|n'[?

lomb potential is used and an Ewald-like summation is uti-

lized to account for the long-range nature of electrostatic 1 erfo( 7|rj; +n'() L erfo( 7|n’[)
interactions. The paper is organized in the following way. In 2= ri+n’ In'[%0 In’|

Sec. Il the details of the model and simulation method are

given. The results and dis_cussions are pr_esented in Sec. I, 2exq—772|n’|2/ 7% 7

and summary and conclusions are drawn in Sec. IV. Analyti- +a > 2 - 2, G, (4)
cal expressions and the details of lattice potential calcula- 'l s

tions are given in Appendix A. wherer’ =(x/a,yla,2), n'=(an,,an,,n,), 0=n,,n,,n,

<2, and erfck) is the complimentary error function. Here
Il. ANISOTROPIC LATTICE MODEL conducting boundary conditions have been utilized, which

AND SIMULATIONS METHOD are less sensitive to finite-size effedtsd]. As usual, the
real-space damping parametermust be chosen in such a
way that all sums in Eq4) converge fast. In our simulations
we usedn=>5, and the Fourier-space sums were restricted to
518 wave vectors.

The difference between the correct lattice potentigl
and its asymptotic limit3) decays rapidly with distance: see
Table I. Therefore, to obtain the total energy of electrostatic
1 - ik-r 3 interactions, the lattice correction is added for ions in elliptic

e 'dk S
J' shells up to certain distance,

The system we have studied consists df @ns, half of
them carrying chargg and half—q, positioned on a simple
tetragonal lattice with lattice parameters rdtiegree of an-
isotropy) a=Db/a. The pairwise interaction potential of two
ions separated by distancg has the form(for details see
Appendix A

Ui=,> 2 2 '
47°DbJ -7 2+ 1/a“— (cosk; + cosk, + 1/a“cosks)

(1) Etotal E1+ E
whereD is the dielectric constant of the structureless solvent. Ir"IL[<Nmax
Reduced quantities are obtained by scaling with the energy
of the strongest ion-ion interaction in two neighborirg
planes in the continuum limiE,=qg%/Db, and the unit cell
volume,vy=a?b, namely,

1
Uij(r)— B |> 5
Fij

We performed grand canonical Monte Carlo simulations
on cubic boxes of length stretched irz direction by a factor
of «, under periodic boundary conditions. Distance-biased
algorithm was employed for insertions and removals of pairs
keT 2N a2b of unlike ions at each time step in order to facilitate accep-
T*=——, p*= , (2 tance, following Ref[31]. To analyze the simulation data
Eo v and obtain the coexistence curves, multihistogram reweight-
ing technique$32] have been used.

whereV is the volume of the system.
Since the Coulomb potential is long ranged, one needs to
account for interactions with particles in all images of the
periodic box used in the simulations. In the case of To reduce possible finite-size effects, we used a system
continuous-space r/interactions the standard method to size L*=L,,/a=L,/b=12 for the isotropic lattice ¢
achieve this is the Ewald summatiofsee, e.g., Refs. =1) anda 12 and L*=16 for stronger anisotropies.

Ill. RESULTS AND DISCUSSION
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TABLE |. Dimensionless lattice Coulomb potentid)ice (1) and its asymptotic limitJ ., given by Eq.(3).

Crystallographic a=1 a=4 a=10
indexes Ulattice Ucont Ulattice Ucont Ulattice Ucont

[100] 1.0815164 1.0000000 3.192933 4.000000 4.949445 10.00000
[001] 1.0815164 1.0000000 1.028176 1.000000 1.006922 1.000000
[1000Q 0.1002578 0.1000000 0.410816 0.400000 1.066964 1.000000
[00 10 0.1002578 0.1000000 1.000167 0.100000 0.100015 0.100000
[10 10 14 0.0577029 0.0577350 0.094250 0.094281 0.099021 0.099015
(10000 0.0100003 0.0100000 0.040009 0.040000 0.100129 0.100000
[0 0 100 0.0100003 0.0100000 0.010003 0.010000 0.010041 0.010000
(100 100 100 0.0057736 0.0057733 0.009431 0.009428 0.009924 0.009901

Short initial runs were used to get a rough estimate of thet0.02[10]. For the same system size, taking into account
location of the tri70ritical point. After that, typical runs in- the lattice correction to the potential yield$;; =0.22, pf;;
volved (1-3)< 10" Monte Carlo steps for equilibration and =0.48 with the same accuracy. Thus the tricritical density
(2-7)x 10° for production. We did not try to locate the sec- remains the same within the error limits, but the temperature
ond order transitions Ng line and restricted ourselves with jncreases by the factor of 1.5. Qualitatively, the increase in
obtaining approximate location of the tricritical point by the tricritical temperature should be expected since lattice
simple linear extrapolation of the coexistence lines, as excoylomb interactions are stronger than af short distances,
pected ford=3 tricriticality. _ _ which leads to a higher stability of dense phases. Neverthe-
In order to separate the effect of using the correct latticgegs the tricritical point is still significantly lowetby 50%
potential in simulations, we studied first the phase coexistinan the predictions of the Debye-tkel theory of lattice
ence in LRPM on a simple cubic lattice; see Fig. 1. On 8gjectrolytesT,,; ~0.365[23], but is about 10% higher than
simple cubic lattice, Coulomb gas with rlpotential is  he resultsT, ;~0.202 from the hierarchical reference theory
known to_pha_se separate, with two coexisting pha_ses belng(quT) of LRPM by Brognaraet al. [24], who also used the
low-density disordered phase and an ordered high-density,rect form of potential in their calculations. Note, that both
ionic crystal-like phasélq,za. The trlcrlt!cal parameter; €S- of these theories agree on the tricritical density toge
timates for the system size” =12, obtained by Panagioto- _ ¢ 38 "\yhich is about 20% lower than our simulation re-

poulos and Kumar[10], are Tj;=0.15+0.01,p3=0.48 ¢ its. However, while taking into account Bjerrum pairing of
ions into neutral dipoleg33] in Debye-Hiuckel approach
030 r—r——7—Trr—T T T T would supposedly produce better results by shifting the
phase coexistence to lower temperatures and higher densi-
ties, the predictions of the HRT seem to be final.
The phase coexistence for different degrees of anisotropy
a is shown in Fig. 1. At anya, the system shows only
order-disorder phase separations and a tricritical point. Thus,
the effect of stretching the lattice amounts merely to altering
the tricritical point location, without changing qualitatively
the topology of the phase diagram. This contrasts with the
recent theory based on Debyedhel calculations[26]
which predicts that at the lattice parameters ratia=2.6 a
distinct gas-liquid phase coexistence may reappear. How-
ever, as was mentioned above, the theoretical approach of
Ref.[26] disregards the Bjerrum pairif@3], or, more gen-
erally, clustering of ions, which is crucial for the thermody-
namics of the gas-liquid transition in electrolytes. Typically,
taking into account pairing somewhat diminishes the critical
temperature but significantly increases the critical density
[4,5,23. Nevertheless, taking into consideration the ion clus-
tering is unlikely to change the topology of the phase dia-
FIG. 1. Phase diagrams in LRPM with correct lattice potential9ram of LRPM on the isotropic lattice. However, since the
on tetragona| lattices for different degrees of anisotr(ﬁppen Strength Of the eleC'[rOSta'[iC interactions increases Wlth an-
circles. Open circles from bottom to top=1,1.2,2,4; solid tri-  isotropy, this may lead to more profound tendency of ions to
angles correspond ta=10. For reference, phase coexistence inbind into neutral dipoles/clustefsnostly inxy planes, pro-
LRPM on cubic lattice with ¥/ potential[10] is shown in solid  ducing eventually a Kosterlitz-Thoule$§KT) transition[34]
circles(see also Fig. B line at infinite stretching. Stronger pairing then could shift
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potential(1) behaves almost asZ(see Table)l However, in
crystallographic directions different frofr001], the aniso-
tropic lattice potential is much stronger tham Bhd decays
slower. While the interactions ia direction almost do not
change witha, stronger anisotropy brings stronger interac-
tions inside thexy layers. This becomes especially important
at large densities, where the average distance between ions is
of the order of the lattice spacing. Therefore, the average
energy per particle increases with anisotropy. As a conse-
quence, higher temperatures are required for fluctuations to
achieve a critical level, and the tricritical temperature grows.
At the same time, more intensive interactions between ions
lead to more active clustering. The free charges density, and
hence the electrostatic part of the free energy diminishes sig-
nificantly. However, the entropic part of the energy remains
the same. Therefore, electrostatic interactions of two charged
sublattices become comparable with the entropy of charge
separation at higher overall densities, and the coexistence
shifts to denser phases.

The trend for tricritical temperature and density to in-
crease with anisotropy is correctly reproduced by the Debye-
Huckel treatment of anisotropic latticd®6]: see Fig. 2.
However, the quantitative agreement between theoretical
predictions and simulations is not very good. While the
theory predicts only a few percent increase in density at large
lattice stretching, our simulations showed more significant
growth. For the tricritical temperature, on the contrary, simu-
lations yield a somewhat smaller slope.

At large stretching, increasing interactions insidg
planes result in lesser relative importance of interactions be-
tween ions with different coordinates. At some point, inter-
actions with ions in the same layer start dominating, and the
3D system becomes quasi-2D. Since different layers become
uncoupled, due to its probabilistic nature phase separation in
each of them takes place at different values of the chemical
potential, and one may have configurations with gas phase in
some of the layers and high-density ordered phase in the
others, which prevents reliable sampling of the system. At
a=10, it turned to be impossible to obtain a reliable phase
separation in a periodic system of more than one layer in

FIG. 2. Reduced tricritical parameters as a function of the latticedirection: at high densities the system would not equilibrate

spacing ratio.(a) Tricritical temperature;(b) Tricritical density.

after more than 10Monte Carlo steps.

Open triangles correspond to the correct lattice potential; squares To this end, fora=10 we carried out simulations of the
are for the continuous space potential. 1Dashed lines are merely system consisting of onlgneplane, that is, square box with
guides to the eye. The analytical theory predictions are shown in.} = L; = 32 periodic inx andy directions, with the potential

solid lines[26].

(). Using only one layer in simulations yielded a highly
asymmetric phase coexistence very similar to that obtained

the gas-liquid coexistence curve much further than in they Teitel for Coulomb gas on two-dimensional square lattice
isotropic case, again putting it completely inside the order{35], with the tricritical point located affy;=0.28,py;
disorder phase envelope. It should be noted that simulations 0.70; see Fig. 1. But in two dimensions, the coefficient in

of the two-dimensional lattice Coulomb gE&5] also reveal

the Laplace equatiofAl) is not 4+ but 27. Since all our

no normal first order gas-liquid transition, but only an order-simulations were done with three-dimensional potential, the
disorder phase separatiof&5].

Tricritical temperature and density as functions of the lat-obtain the correct 2D limit, while the density should remain
tice parameters ratia are presented in Fig. 2. As anisotropy intact. This yieldsT5,=0.14, p5,=0.70 which exactly coin-
increases, both tricritical temperature and density increaseides with the values obtained by Teitel.

Physical account of this behavior follows from the properties
of the lattice Coulomb potential. Indeed,zirection lattice

temperature at large anisotropies must be divided by 2 to

It should be also noted that parts of the coexistence curve

for a=10 at intermediate densities lay below the corre-
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FIG. 4. Reduced tricritical temperatufie =kTDa/qg? for the
system with continuum t/Coulomb potentialsolid symbol$ and
true lattice potentiajopen symbolsas a function of the anisotropy.

FIG. 3. Phase diagrams of LRPM with continuous-spage 1/
Coulomb potential. From bottom to top;=1,1.2,1.5,2. Reduced
temperature is defined by E(R).

sponding curve fora=4. However, for the latter case in with earlier the_oretica! results. Another pogsible_ scaling is
contrast toa =10, the interactions between layers are stilldefined by the interaction energy of the two ions in the same
very important and add significantly to the total free energyPlane,E§=q*Da (whereD is the three-dimensional dielec-
of the system: simulations of periodic system of only onetric constant, appropriate for therlpotentia). Calculations
layer produce much lower coexistence curve. Therefore, awith the temperature normalized by this energy?
though at equal densities the energy of ions interactions in=kTDa/g?, are shown in Fig. 4. With this scaling, the tric-
side a single layer fon=4 is less than forr=10, the total  ritical point behavior as a function of anisotropy is drasti-
energy density may be higher because of the interactiongally different: the tricritical temperature for rljpotential
between layers, and hence the temperature of phase sepa@gcreaseswith anisotropy, converging td*=0.11, which
tions would also be higher. However, this is not essential aphysically is more sensible. The tricritical temperature for
very low or high densities where the interactions inside laythe correct lattice potential, however, now decays to zero at
ers dominate anyway. Taking into account the influence ohigh anisotropy.
layers on each other at=10 probably would eliminate this ~ Although it may seem at first sight to be a mere numerical
intersection of the coexistence curves. Nevertheless, thikescaling of the temperatur@=T*/a, actually it is not,
hardly would change our estimate for the tricritical point since it reflects the difference in the appropriate energy
location in the limit of infinite stretching, which, as it has scales for lattice and continuum potentials. From purely
been mentioned, coincides with the results by Teitel for two-simulational point of view the choice of the energgnd
dimensional square lattice. temperaturgscale is arbitrary. However, physical reasoning
To gain further insight on the behavior of LRPM on an- must be taken into account. With the correct lattice potential,
isotropic lattices we also performed simulations with theincreasing anisotropy leads to a qualitative change of the
continuous space Coulomb potential. The correspondingotential. In the limit of infinite layer separation, the in-plane
phase diagrams for box siz& =16 anda<2 are presented potential becomes asymptotically logarithmic, which means
in Fig. 3. At any fixed lattice stretching, the phase coexist-that the in-plane interactions become stronger with increas-
ence is very similar to the case of the true lattice potentialing «. Becoming logarithmic, it also becomes independent
No normal gas-liquid phase transition is found, and the phasef the in-plane length scale. These two arguments require
coexistence is between a disordered low-density phase arifiat for the correct lattice potential the energy must be scaled
ordered high-density phase. The tricritical temperature showsith Eo,=0%/Db [see Eq.(1)], and scaling with Eg
the same trend as for the correct lattice potential, increasing g?/Da yields unphysical zero tricritical temperature in the
with the inter-layer distance. However, since for smathe 2D limit. On the other hand, while for the correct lattice
interactions are weaker now, the tricritical temperatures arpotential the “natural” anisotropy-independent scale of en-
lower. Nevertheless, at further increasing of anisotropy, thergy is set by layer-layer interactions, it is not appropriate for
reduced tricritical temperature diverges. the discretized continuum Coulomb potential. Indeed, from
This is directly related to the choice of the temperaturethe physical point of view, for t/potential increasing anisot-
units. The scaling of the temperatufawith E,=q%/Db has  ropy is not accompanied by stronger interactions between
been maintained so far in this paper to allow comparisongons. On the contrary, while interactions inside #tyegplanes
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remain the same, due to a weaker coupling of the layersrdered dense phases increases in a similar way, and the
effective energy per particle diminishes, and so must the triformation of an ordered structure remains thermodynami-
critical temperature. The correct scale is then obviouslycally more favorable than possible gas-liquid phase coexist-
given by the energy of the ion-ion interactions at contactence. Taking explicitly into account the ion clustering will
insidea layer,E5 =qg?/Da. The decay of the tricritical tem- provide a better theoretical description of thermodynamics of
perature is rather fast and the temperature saturates alreadyi@pic systems on anisotropic lattices.

the lattice parameters ratie=2. Detailed studies of ions

configurations showed that at=2 different xy planes be- ACKNOWLEDGMENTS
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relative importance of clustering when one approaches the

two-dimensional limit of infinite stretching. However, since
the potential is now weaker, the limiting density is lower APPENDIX A: LATTICE COULOMB POTENTIAL: EXACT

than in true lattice 2D systems. Also, since for pbtential REPRESENTATION AND FAST CALCULATION

the transition to the quasi-2D behavior occurs at lower de- ¢ g the discrete symmetry, the correct lattice Coulomb

grees of anisotropy, the tricritical density saturates earliepantial differs from continuous i/ The analytical expres-

than for true lattice system. sion for this potential follows from the lattice version of the
Poisson equatiof3],

The tricritical density gradually increases from,

IV. CONCLUSIONS
4
In this study, grand canonical Monte Carlo simulations Ap(r)=——=—24(r), (A1)

and histogram reweighting techniques have been used to in- Duo

vgstlgate phasg behavior of the rgstncted. pr|m|t|ve_ mOde\llvhere the exact form of the lattice Laplacian depends on the
with correct lattice Coulomb potential on simple cubic and

tetragonal lattices. Our results show that, at all degrees oqeometry of the latticeD is the dielectric constant of the
rag ) . C 9 ‘media, antv is the unit cell volume. For simple tetragonal
anisotropy, only order-disorder phase separations and a tri

ritical point exist. For isotropic cubic lattice, the effect of ‘f&}tnce_ with lattice spacinga in x andy directions and in z

) . X . irection one has
using the correct lattice potential shows only in the value ofd
the tricritical temperature. As anisotropy increases, both the Ao=A

o Lo ' . = +Ayp+ A, A2
tricritical temperature and density increase. At large anisot- PTOPT Ry T 229 (A2)
ropy the system undergoes a qualitative shift from a threeyi\,
dimensional to two-dimensional behavior. This shift only al-
ters the tricritical parameters, with no change in the phase Ajp(r)=1a o(r—aie)—2¢(r)+o(r+ae)],
diagram topology. To study in detail the transition from 3D (A3)
to 2D behavior, further investigations are needed. In particu-
lar, its location may depend on the system size and boundagyherei =x,y,z; a,=a,=a, a,=b ande are the unit vectors
conditions used in Ewald summation. For continuousplb-  along the corresponding lattice directions. After introducing

tential, the properly defined reduced tricritical temperaturehe anisotropy parameter=b/a, the solution of the Poisson
displays an opposite trend and decreases with the anisotropyguation has the following form:
Although exact values of the tricritical temperature and den-

sity can be influenced by finite size effects, an issue totally 1
omitted in this study, their qualitative behavior seems physi(r)= 5
cally plausible. It would be also useful to develop another 47°Db

procedure for Ewald-like summation for lattice potential,
which will not rely on its asymptotic behavior.

The only existing theoretical treatment of Coulomb gas on
anisotropic lattices based on the Debyeekiei approach
captures correctly the trend of the tricritical temperature and However, the potential in the form of a triple integral of a
density behavior with anisotrod26]. However, the absence periodic function is not convenient for numerical calcula-
of the anticipated normal gas-liquid transition suggests thations. More practical expression for this integral has been
with increasing anisotropy, stability of both ordered and dis-obtained by Maradudiet al.[36],

- eik-rd3k
f (A4)

— 72+ 1/a®— (cosk, + cosk,+ 1/a?cosks)
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20 (= which follow from Eg. (A4). At fixed n, potential at any
@(fE(Lm.n)):D—bf exd —(2+ La?)t] point (I,m,n) can be obtained recursively from two lines,
0 m=0 andm=1. Forl =0 it would be indeterminate, but this
X1 (D)D) 1t/ a?)dt, (A5) is not important since due to the symmetgy(0O,m,n)

wherel, denotes a modified Bessel function of the first kind.:(P(m’O’n)' As Friedberg and Martin showg@0), this re-

To enhance calculations of the lattice potential for thecursio.n does not lead to incregse of the initial possible
whole lattice, an error-free propagating algorithm, similar torounding error am=0 andm=1 Imes_as long afi|<|m.
that proposed by Friedberg and MarfB0] for isotropic lat- 7O [I[>[m| the symmetrye(l,m,n)=¢(m,I,n) can be
tice, has been used. First, we compute lattice potentials igMployed.

planes(x0z) and(x1z) using Eq.(A5). Now, for a given Note that similar considerations can be done for initial
lattice cite (,m,n), the anisotropic lattice potential satisfies (X0z) and(x1z) planes in attempt to generate the potentials
the gradient equations from two lines, using the second equation in E46). In

these planes the potential is not symmetric, and therefore two

sectors|l|< a?|n| and|l|=a?|n| need to be calculated sepa-

| rately, starting from the corresponding axes and then
“stitched” together at thel| = «?|n| line. However, since all
potentials and interactions are computed only once at the
beginning of simulations and then fast look-up algorithm is

5 o(l,mn+1)—¢(l,mn—1) used, this_ gives_ us a relatively small advantage in the overall

=« ,  (AB)  computational time.

o(l+1m,n)—e(l—1,m,n)

_e(l,m+1n)—e(l,m—1n)
a m

n
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