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Thermodynamics of electrolytes on anisotropic lattices
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The phase behavior of ionic fluids on simple cubic and tetragonal~anisotropic! lattices has been studied by
grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and
continuous-space 1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coex-
istence between a disordered low-density phase and an ordered high-density phase with the structure similar to
ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to
be increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the
Debye-Hückel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we
estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electro-
lyte to beTtri* 50.14 andr tr i* 50.70.
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I. INTRODUCTION

After controversial experimental results on the nature
ionic criticality @1–3# the studies of critical phenomena
ionic fluids received a fresh impetus, and over the past
cade substantial progress has been made@3,4#. However, a
complete thermodynamic description of electrolyte syste
is still unavailable.

The simplest and most frequently employed model sys
for both theoretical and Monte Carlo investigations of Co
lombic systems is the restricted primitive model~RPM!,
which is a gas of equisized hard-sphere ions carrying p
tive and negative charges of equal magnitude. From the
oretical point of view, a reasonable description of the RP
in the critical region has been obtained at a mean-field le
using integral equations approach@6–8# and Debye-Hu¨ckel
theory @4,5#. While theoretical predictions of the critical pa
rameters@5,8,9# agree reasonably well with those obtained
computer simulations@10,11#, recent Monte Carlo investiga
tions of ionic systems indicate a nonclassical Ising-l
asymptotic critical behavior@12#. Moreover, predictions of
different mean-field theories for charge- and size-asymme
primitive systems differ significantly from each other@13–
17#. In the absence of real experimental data, numer
simulations provide an important criterion for testing diffe
ent theoretical methods@18–21#.

In recent years, a new theoretical approach to study
thermodynamics and criticality of Coulomb systems ba
on the investigation of corresponding lattice models, h
been introduced@15,22–26#. Being obviously less realistic
than their continuous-space counterparts, lattice models
much easier to handle analytically, and the information th
provide is crucial for understanding the physics of criticali
Moreover, finely discretized lattices with lattice spacing se
eral times smaller than the ion size present substantial c
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putational advantages over continuous space simulati
while producing almost identical critical parameters a
phase diagrams@10#. By contrast, when the ionic diameter
equal to the spacing of the underlying lattice, the phase
gram is drastically different. The symmetry of simple cub
or body-centered cubic lattices allows for unequal cha
distribution between two identical sublattices, yielding an
dered structure similar to an ionic crystal. The competiti
between electrostatic interactions of the two charged sub
tices and the entropy of charge separation leads then
order-disorder phase transitions and a tricritical po
@10,22–24#.

A systematic study of the lattice restricted primitiv
model ~LRPM! based on the Debye-Hu¨ckel approach has
shown that, in accordance with Monte Carlo simulations
Coulombic-governed gas-liquid phase transitions seen
continuum electrolytes is totally suppressed on simple cu
and body-centered cubic lattices due to the formation of
thermodynamically more stable charge-ordered phase@23#.
Ciach and Stell@25# argued that, unlike nonionic fluids, in
charged systems the most important are short-range fluc
tions. Consequently, they studied a LRPM supplemen
with additional short-range interactions between ions a
concluded that at some strength of the short-range attrac
both the normal critical and tricritical point can become th
modynamically stable@25#. This leads to complex phase dia
grams with two distinct phase transitions, one between
and disordered liquid phase, and another one between d
dered liquid and a charge ordered phase. Recent Monte C
studies have confirmed qualitatively most of these theoret
predictions but further investigations are required@27#.

At low dimensions Coulombic interactions are strong
than in three-dimensional systems, and the possibility
gas-liquid phase transitions increases. This idea has b
used recently in the investigation of anisotropic lattice mo
els of electrolytes using Debye-Hu¨ckel method@26#. In this
study the anisotropy mimicked the lowering of the spat
dimensionality. It has been found that for strongly anis
tropic lattices gas-liquid phase coexistence is restored. H
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ever, this theory neglects an ion clustering phenome
which are important in charged particles systems@4,5#. Thus
these theoretical predictions should be tested by comp
simulations.

Current Monte Carlo studies of lattice RPM ind53 di-
mensions employ the continuous space 1/r potential
@10,22,27#. However, because of the discrete lattice symm
try, the correct lattice Coulomb potential differs from 1/r at
short distances and approaches it asymptotically at large
tances. This raises the question of how using the cor
electrostatic interactions will affect the thermodynamics a
critical behavior of ionic systems. Indeed, the lattice corr
tion to 1/r potential decays rapidly with distance and thus
can be viewed in a sense as an additional short-range i
action. In order to understand correctly the underlyi
mechanisms of phase transitions in Coulombic systems,
tice models should be investigated with the correspond
lattice potentials.

In this paper we study the RPM on tetragonal lattic
using grand canonical Monte Carlo simulations and his
gram reweighting technique@32#. The correct lattice Cou-
lomb potential is used and an Ewald-like summation is u
lized to account for the long-range nature of electrosta
interactions. The paper is organized in the following way.
Sec. II the details of the model and simulation method
given. The results and discussions are presented in Sec
and summary and conclusions are drawn in Sec. IV. Anal
cal expressions and the details of lattice potential calc
tions are given in Appendix A.

II. ANISOTROPIC LATTICE MODEL
AND SIMULATIONS METHOD

The system we have studied consists of 2N ions, half of
them carrying chargeq and half2q, positioned on a simple
tetragonal lattice with lattice parameters ratio~degree of an-
isotropy! a5b/a. The pairwise interaction potential of tw
ions separated by distancer i j has the form~for details see
Appendix A!

Ui j 5
1

4p2Db
E

2p

p eik•rd3k

211/a22~cosk11cosk211/a2cosk3!
,

~1!

whereD is the dielectric constant of the structureless solve
Reduced quantities are obtained by scaling with the ene
of the strongest ion-ion interaction in two neighboringxy
planes in the continuum limit,E05q2/Db, and the unit cell
volume,v05a2b, namely,

T* 5
kBT

E0
, r* 5

2Na2b

V
, ~2!

whereV is the volume of the system.
Since the Coulomb potential is long ranged, one need

account for interactions with particles in all images of t
periodic box used in the simulations. In the case
continuous-space 1/r interactions the standard method
achieve this is the Ewald summation~see, e.g., Refs
06611
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@28,29#!. However, no similar method is available for th
lattice Coulomb potential. Therefore, we propose the follo
ing approximate scheme, which is based on the asympt
properties of the anisotropic lattice potential~1!.

It can be shown that the potential~1! for finite a at large
distances behaves as

Ui j „r5~x,y,z!…;
a

Ax21y21az2
. ~3!

For this potential, an Ewald-like sum can be construc
along the lines of the derivation in Ref.@29#, which yields
the ‘‘continuum’’ part of the energy of interactions of per
odic system of 2N particles

E15 (
allspace

1

ur i j8 u

5 (
i , j 51

2N

qiqjS (
n8

a2exp~2p2un8u2/h212p in8r i j8 !

2pun8u2

1
1

2 (
n8

erfc~hur i j 1n8u!

ur i j8 1n8u D 1 (
un8uÞ0

S erfc~hun8u!

un8u

1a2
exp~2p2un8u2/h2!

p2un8u2
D 2

h

Ap
(
i 51

2N

qi , ~4!

where r 85(x/a,y/a,z), n85(anx ,any ,nz), 0<nx ,ny ,nz
<2p, and erfc(x) is the complimentary error function. Her
conducting boundary conditions have been utilized, wh
are less sensitive to finite-size effects@19#. As usual, the
real-space damping parameterh must be chosen in such
way that all sums in Eq.~4! converge fast. In our simulation
we usedh55, and the Fourier-space sums were restricted
518 wave vectors.

The difference between the correct lattice potential~1!
and its asymptotic limit~3! decays rapidly with distance: se
Table I. Therefore, to obtain the total energy of electrosta
interactions, the lattice correction is added for ions in ellip
shells up to certain distance,

Etotal5E11 (
ur8/Lu,nmax

S Ui j ~r !2
1

ur i j8 u D . ~5!

We performed grand canonical Monte Carlo simulatio
on cubic boxes of lengthL stretched inz direction by a factor
of a, under periodic boundary conditions. Distance-bias
algorithm was employed for insertions and removals of pa
of unlike ions at each time step in order to facilitate acce
tance, following Ref.@31#. To analyze the simulation dat
and obtain the coexistence curves, multihistogram reweig
ing techniques@32# have been used.

III. RESULTS AND DISCUSSION

To reduce possible finite-size effects, we used a sys
size L* [Lx,y /a5Lz /b512 for the isotropic lattice (a
51) and a51.2, and L* 516 for stronger anisotropies
0-2
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THERMODYNAMICS OF ELECTROLYTES ON . . . PHYSICAL REVIEW E68, 066110 ~2003!
TABLE I. Dimensionless lattice Coulomb potentialUlattice ~1! and its asymptotic limitUcont given by Eq.~3!.

Crystallographic a51 a54 a510
indexes Ulattice Ucont Ulattice Ucont Ulattice Ucont

@1 0 0# 1.0815164 1.0000000 3.192933 4.000000 4.949445 10.0000
@0 0 1# 1.0815164 1.0000000 1.028176 1.000000 1.006922 1.00000
@10 0 0# 0.1002578 0.1000000 0.410816 0.400000 1.066964 1.00000
@0 0 10# 0.1002578 0.1000000 1.000167 0.100000 0.100015 0.10000
@10 10 10# 0.0577029 0.0577350 0.094250 0.094281 0.099021 0.09901
@100 0 0# 0.0100003 0.0100000 0.040009 0.040000 0.100129 0.10000
@0 0 100# 0.0100003 0.0100000 0.010003 0.010000 0.010041 0.01000
@100 100 100# 0.0057736 0.0057733 0.009431 0.009428 0.009924 0.00990
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Short initial runs were used to get a rough estimate of
location of the tricritical point. After that, typical runs in
volved (1 –3)3107 Monte Carlo steps for equilibration an
(2 –7)3108 for production. We did not try to locate the se
ond order transitions Ne´el line and restricted ourselves wit
obtaining approximate location of the tricritical point b
simple linear extrapolation of the coexistence lines, as
pected ford53 tricriticality.

In order to separate the effect of using the correct lat
potential in simulations, we studied first the phase coex
ence in LRPM on a simple cubic lattice; see Fig. 1. On
simple cubic lattice, Coulomb gas with 1/r potential is
known to phase separate, with two coexisting phases bei
low-density disordered phase and an ordered high-den
ionic crystal-like phase@10,22#. The tricritical parameters es
timates for the system sizeL* 512, obtained by Panagioto
poulos and Kumar@10#, are Ttri* 50.1560.01,r tr i* 50.48

FIG. 1. Phase diagrams in LRPM with correct lattice poten
on tetragonal lattices for different degrees of anisotropy~open
circles!. Open circles from bottom to topa51,1.2,2,4; solid tri-
angles correspond toa510. For reference, phase coexistence
LRPM on cubic lattice with 1/r potential @10# is shown in solid
circles ~see also Fig. 3!.
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60.02 @10#. For the same system size, taking into acco
the lattice correction to the potential yieldsTtri* 50.22,r tr i*
50.48 with the same accuracy. Thus the tricritical dens
remains the same within the error limits, but the temperat
increases by the factor of 1.5. Qualitatively, the increase
the tricritical temperature should be expected since lat
Coulomb interactions are stronger than 1/r at short distances
which leads to a higher stability of dense phases. Never
less, the tricritical point is still significantly lower~by 50%!
than the predictions of the Debye-Hu¨ckel theory of lattice
electrolytesTtri '0.365 @23#, but is about 10% higher than
the resultsTtri '0.202 from the hierarchical reference theo
~HRT! of LRPM by Brognaraet al. @24#, who also used the
correct form of potential in their calculations. Note, that bo
of these theories agree on the tricritical density to ber tr i*
'0.38, which is about 20% lower than our simulation r
sults. However, while taking into account Bjerrum pairing
ions into neutral dipoles@33# in Debye-Hückel approach
would supposedly produce better results by shifting
phase coexistence to lower temperatures and higher de
ties, the predictions of the HRT seem to be final.

The phase coexistence for different degrees of anisotr
a is shown in Fig. 1. At anya, the system shows only
order-disorder phase separations and a tricritical point. Th
the effect of stretching the lattice amounts merely to alter
the tricritical point location, without changing qualitativel
the topology of the phase diagram. This contrasts with
recent theory based on Debye-Hu¨ckel calculations @26#
which predicts that at the lattice parameters ratiob/a>2.6 a
distinct gas-liquid phase coexistence may reappear. H
ever, as was mentioned above, the theoretical approac
Ref. @26# disregards the Bjerrum pairing@33#, or, more gen-
erally, clustering of ions, which is crucial for the thermod
namics of the gas-liquid transition in electrolytes. Typical
taking into account pairing somewhat diminishes the criti
temperature but significantly increases the critical den
@4,5,23#. Nevertheless, taking into consideration the ion clu
tering is unlikely to change the topology of the phase d
gram of LRPM on the isotropic lattice. However, since t
strength of the electrostatic interactions increases with
isotropy, this may lead to more profound tendency of ions
bind into neutral dipoles/clusters~mostly in xy planes!, pro-
ducing eventually a Kosterlitz-Thouless~KT! transition@34#
line at infinite stretching. Stronger pairing then could sh

l
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KOBELEV, KOLOMEISKY, AND PANAGIOTOPOULOS PHYSICAL REVIEW E68, 066110 ~2003!
the gas-liquid coexistence curve much further than in
isotropic case, again putting it completely inside the ord
disorder phase envelope. It should be noted that simulat
of the two-dimensional lattice Coulomb gas@35# also reveal
no normal first order gas-liquid transition, but only an ord
disorder phase separations@35#.

Tricritical temperature and density as functions of the l
tice parameters ratioa are presented in Fig. 2. As anisotrop
increases, both tricritical temperature and density incre
Physical account of this behavior follows from the propert
of the lattice Coulomb potential. Indeed, inz direction lattice

FIG. 2. Reduced tricritical parameters as a function of the lat
spacing ratio.~a! Tricritical temperature;~b! Tricritical density.
Open triangles correspond to the correct lattice potential; squ
are for the continuous space potential 1/r . Dashed lines are merel
guides to the eye. The analytical theory predictions are show
solid lines@26#.
06611
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potential~1! behaves almost as 1/z ~see Table I!. However, in
crystallographic directions different from@001#, the aniso-
tropic lattice potential is much stronger than 1/r and decays
slower. While the interactions inz direction almost do not
change witha, stronger anisotropy brings stronger intera
tions inside thexy layers. This becomes especially importa
at large densities, where the average distance between io
of the order of the lattice spacing. Therefore, the aver
energy per particle increases with anisotropy. As a con
quence, higher temperatures are required for fluctuation
achieve a critical level, and the tricritical temperature grow
At the same time, more intensive interactions between i
lead to more active clustering. The free charges density,
hence the electrostatic part of the free energy diminishes
nificantly. However, the entropic part of the energy rema
the same. Therefore, electrostatic interactions of two char
sublattices become comparable with the entropy of cha
separation at higher overall densities, and the coexiste
shifts to denser phases.

The trend for tricritical temperature and density to i
crease with anisotropy is correctly reproduced by the Deb
Hückel treatment of anisotropic lattices@26#: see Fig. 2.
However, the quantitative agreement between theoret
predictions and simulations is not very good. While t
theory predicts only a few percent increase in density at la
lattice stretching, our simulations showed more signific
growth. For the tricritical temperature, on the contrary, sim
lations yield a somewhat smaller slope.

At large stretching, increasing interactions insidexy
planes result in lesser relative importance of interactions
tween ions with differentz coordinates. At some point, inter
actions with ions in the same layer start dominating, and
3D system becomes quasi-2D. Since different layers bec
uncoupled, due to its probabilistic nature phase separatio
each of them takes place at different values of the chem
potential, and one may have configurations with gas phas
some of the layers and high-density ordered phase in
others, which prevents reliable sampling of the system.
a510, it turned to be impossible to obtain a reliable pha
separation in a periodic system of more than one layerz
direction: at high densities the system would not equilibr
after more than 109 Monte Carlo steps.

To this end, fora510 we carried out simulations of th
system consisting of onlyoneplane, that is, square box wit
Lx* 5Ly* 532 periodic inx andy directions, with the potentia
~1!. Using only one layer in simulations yielded a high
asymmetric phase coexistence very similar to that obtai
by Teitel for Coulomb gas on two-dimensional square latt
@35#, with the tricritical point located atTtri* 50.28,r tr i*
50.70; see Fig. 1. But in two dimensions, the coefficient
the Laplace equation~A1! is not 4p but 2p. Since all our
simulations were done with three-dimensional potential,
temperature at large anisotropies must be divided by 2
obtain the correct 2D limit, while the density should rema
intact. This yieldsT2D* 50.14,r2D* 50.70 which exactly coin-
cides with the values obtained by Teitel.

It should be also noted that parts of the coexistence cu
for a510 at intermediate densities lay below the cor
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sponding curve fora54. However, for the latter case i
contrast toa510, the interactions between layers are s
very important and add significantly to the total free ene
of the system: simulations of periodic system of only o
layer produce much lower coexistence curve. Therefore,
though at equal densities the energy of ions interactions
side a single layer fora54 is less than fora510, the total
energy density may be higher because of the interact
between layers, and hence the temperature of phase se
tions would also be higher. However, this is not essentia
very low or high densities where the interactions inside l
ers dominate anyway. Taking into account the influence
layers on each other ata510 probably would eliminate this
intersection of the coexistence curves. Nevertheless,
hardly would change our estimate for the tricritical po
location in the limit of infinite stretching, which, as it ha
been mentioned, coincides with the results by Teitel for tw
dimensional square lattice.

To gain further insight on the behavior of LRPM on a
isotropic lattices we also performed simulations with t
continuous space Coulomb potential. The correspond
phase diagrams for box sizeL* 516 anda<2 are presented
in Fig. 3. At any fixed lattice stretching, the phase coex
ence is very similar to the case of the true lattice potent
No normal gas-liquid phase transition is found, and the ph
coexistence is between a disordered low-density phase
ordered high-density phase. The tricritical temperature sh
the same trend as for the correct lattice potential, increa
with the inter-layer distance. However, since for smalla the
interactions are weaker now, the tricritical temperatures
lower. Nevertheless, at further increasing of anisotropy,
reduced tricritical temperature diverges.

This is directly related to the choice of the temperatu
units. The scaling of the temperatureT with E05q2/Db has
been maintained so far in this paper to allow comparis

FIG. 3. Phase diagrams of LRPM with continuous-spacer
Coulomb potential. From bottom to top,a51,1.2,1.5,2. Reduced
temperature is defined by Eq.~2!.
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with earlier theoretical results. Another possible scaling
defined by the interaction energy of the two ions in the sa
plane,E0

]5q2/Da ~whereD is the three-dimensional dielec
tric constant, appropriate for the 1/r potential!. Calculations
with the temperature normalized by this energy,T]

5kTDa/q2, are shown in Fig. 4. With this scaling, the tric
ritical point behavior as a function of anisotropy is dras
cally different: the tricritical temperature for 1/r potential
decreaseswith anisotropy, converging toT]50.11, which
physically is more sensible. The tricritical temperature
the correct lattice potential, however, now decays to zero
high anisotropy.

Although it may seem at first sight to be a mere numeri
rescaling of the temperature,T]5T* /a, actually it is not,
since it reflects the difference in the appropriate ene
scales for lattice and continuum potentials. From pur
simulational point of view the choice of the energy~and
temperature! scale is arbitrary. However, physical reasoni
must be taken into account. With the correct lattice potent
increasing anisotropy leads to a qualitative change of
potential. In the limit of infinite layer separation, the in-plan
potential becomes asymptotically logarithmic, which mea
that the in-plane interactions become stronger with incre
ing a. Becoming logarithmic, it also becomes independ
of the in-plane length scale. These two arguments req
that for the correct lattice potential the energy must be sca
with E05q2/Db @see Eq. ~1!#, and scaling with E0

]

5q2/Da yields unphysical zero tricritical temperature in th
2D limit. On the other hand, while for the correct lattic
potential the ‘‘natural’’ anisotropy-independent scale of e
ergy is set by layer-layer interactions, it is not appropriate
the discretized continuum Coulomb potential. Indeed, fr
the physical point of view, for 1/r potential increasing anisot
ropy is not accompanied by stronger interactions betw
ions. On the contrary, while interactions inside thexy planes

FIG. 4. Reduced tricritical temperatureT]5kTDa/q2 for the
system with continuum 1/r Coulomb potential~solid symbols! and
true lattice potential~open symbols! as a function of the anisotropy
0-5
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KOBELEV, KOLOMEISKY, AND PANAGIOTOPOULOS PHYSICAL REVIEW E68, 066110 ~2003!
remain the same, due to a weaker coupling of the lay
effective energy per particle diminishes, and so must the
critical temperature. The correct scale is then obviou
given by the energy of the ion-ion interactions at cont
insidea layer,E0

]5q2/Da. The decay of the tricritical tem
perature is rather fast and the temperature saturates alrea
the lattice parameters ratioa.2. Detailed studies of ions
configurations showed that ata>2 different xy planes be-
come totally independent of each other, and the system
haves as a quasi-2D liquid. Similarly to the true lattice p
tential case, to obtain phase coexistence for the limit
infinite stretching (a>2), simulations of periodic system o
only one plane were carried out with box sizeL532 and
L548.

The tricritical density gradually increases fromr tr i*
.0.48 for isotropic lattice tor tr i* .0.58 at strong anisotropy
following the trend shown by the system with correct latti
interactions; see Fig. 2~b! and Fig. 3. This again reflects th
relative importance of clustering when one approaches
two-dimensional limit of infinite stretching. However, sinc
the potential is now weaker, the limiting density is low
than in true lattice 2D systems. Also, since for 1/r potential
the transition to the quasi-2D behavior occurs at lower
grees of anisotropy, the tricritical density saturates ear
than for true lattice system.

IV. CONCLUSIONS

In this study, grand canonical Monte Carlo simulatio
and histogram reweighting techniques have been used t
vestigate phase behavior of the restricted primitive mo
with correct lattice Coulomb potential on simple cubic a
tetragonal lattices. Our results show that, at all degree
anisotropy, only order-disorder phase separations and a
ritical point exist. For isotropic cubic lattice, the effect
using the correct lattice potential shows only in the value
the tricritical temperature. As anisotropy increases, both
tricritical temperature and density increase. At large anis
ropy the system undergoes a qualitative shift from a thr
dimensional to two-dimensional behavior. This shift only
ters the tricritical parameters, with no change in the ph
diagram topology. To study in detail the transition from 3
to 2D behavior, further investigations are needed. In part
lar, its location may depend on the system size and boun
conditions used in Ewald summation. For continuous 1/r po-
tential, the properly defined reduced tricritical temperat
displays an opposite trend and decreases with the anisot
Although exact values of the tricritical temperature and d
sity can be influenced by finite size effects, an issue tot
omitted in this study, their qualitative behavior seems phy
cally plausible. It would be also useful to develop anoth
procedure for Ewald-like summation for lattice potenti
which will not rely on its asymptotic behavior.

The only existing theoretical treatment of Coulomb gas
anisotropic lattices based on the Debye-Hu¨ckel approach
captures correctly the trend of the tricritical temperature a
density behavior with anisotropy@26#. However, the absenc
of the anticipated normal gas-liquid transition suggests
with increasing anisotropy, stability of both ordered and d
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ordered dense phases increases in a similar way, and
formation of an ordered structure remains thermodyna
cally more favorable than possible gas-liquid phase coex
ence. Taking explicitly into account the ion clustering w
provide a better theoretical description of thermodynamics
ionic systems on anisotropic lattices.
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APPENDIX A: LATTICE COULOMB POTENTIAL: EXACT
REPRESENTATION AND FAST CALCULATION

Due to the discrete symmetry, the correct lattice Coulo
potential differs from continuous 1/r . The analytical expres-
sion for this potential follows from the lattice version of th
Poisson equation@23#,

Dw~r !52
4p

Dv0
d~r !, ~A1!

where the exact form of the lattice Laplacian depends on
geometry of the lattice,D is the dielectric constant of the
media, andv0 is the unit cell volume. For simple tetragon
lattice with lattice spacingsa in x andy directions andb in z
direction one has

Dw5Dxw1Dyw1Dzw, ~A2!

with

D iw~r !51/ai
2@w~r2aiei !22w~r !1w~r1aiei !#,

~A3!

wherei 5x,y,z; ax5ay5a, az5b andei are the unit vectors
along the corresponding lattice directions. After introduci
the anisotropy parametera5b/a, the solution of the Poisson
equation has the following form:

w~r !5
1

4p2Db

3E
2p

p eik•rd3k

211/a22~cosk11cosk211/a2cosk3!
. ~A4!

However, the potential in the form of a triple integral of
periodic function is not convenient for numerical calcul
tions. More practical expression for this integral has be
obtained by Maradudinet al. @36#,
0-6
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w„r[~ l ,m,n!…5
2p

DbE0

`

exp@2~211/a2!t#

3I l~ t !I m~ t !I n~ t/a2!dt, ~A5!

whereI l denotes a modified Bessel function of the first kin
To enhance calculations of the lattice potential for t

whole lattice, an error-free propagating algorithm, similar
that proposed by Friedberg and Martin@30# for isotropic lat-
tice, has been used. First, we compute lattice potential
planes^x0z& and ^x1z& using Eq.~A5!. Now, for a given
lattice cite (l ,m,n), the anisotropic lattice potential satisfie
the gradient equations

w~ l 11,m,n!2w~ l 21,m,n!

l

5
w~ l ,m11,n!2w~ l ,m21,n!

m

5a2
w~ l ,m,n11!2w~ l ,m,n21!

n
, ~A6!
r,

ev

. E

.
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which follow from Eq. ~A4!. At fixed n, potential at any
point (l ,m,n) can be obtained recursively from two line
m50 andm51. Forl 50 it would be indeterminate, but thi
is not important since due to the symmetryw(0,m,n)
5w(m,0,n). As Friedberg and Martin showed@30#, this re-
cursion does not lead to increase of the initial possi
rounding error atm50 andm51 lines as long asu l u<umu.
For u l u.umu the symmetryw( l ,m,n)5w(m,l ,n) can be
employed.

Note that similar considerations can be done for init
^x0z& and^x1z& planes in attempt to generate the potenti
from two lines, using the second equation in Eq.~A6!. In
these planes the potential is not symmetric, and therefore
sectors,u l u<a2unu andu l u>a2unu need to be calculated sepa
rately, starting from the corresponding axes and th
‘‘stitched’’ together at theu l u5a2unu line. However, since all
potentials and interactions are computed only once at
beginning of simulations and then fast look-up algorithm
used, this gives us a relatively small advantage in the ove
computational time.
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